On the network thermodynamics of mass action chemical reaction networks

Arjan van der Schaft

joint work with Bayu Jayawardhana, Shodhan Rao

Johann Bernoulli Institute for Mathematics and Computer Science
University of Groningen, the Netherlands
Aim:

• To provide a, thermodynamically consistent, compact formulation of the dynamics of large-scale, isothermal, chemical reaction networks, emphasizing the network (graph) structure.
• The obtained formulation can bee seen as a full network version of the description by Oster & Perelson of mass action kinetics, and has a direct port-Hamiltonian interpretation.
• The formulation allows for a very easy and clear analysis of equilibria and stability.
• Main open problem: steady-state analysis of networks with inflows and outflows.
Outline

1 Chemical reaction networks

2 Reaction-diffusion networks

3 Conclusions and outlook
Consider a chemical reaction network with \(m \) chemical species, among which \(r \) chemical reactions take place.
The dynamics of the vector of concentrations \(\mathbf{x} \in \mathbb{R}^m_+ \) is has the form

\[\dot{\mathbf{x}} = S \mathbf{v}(\mathbf{x}), \]

where the stoichiometric matrix \(S \) is an \(m \times r \) matrix consisting of (positive and negative) integer elements, and \(\mathbf{v}(\mathbf{x}) \in \mathbb{R}^r \) is the vector of reaction rates. E.g., for

\[X_1 + 2X_2 \rightleftharpoons X_3 \rightleftharpoons 2X_1 + X_2 \]

\[
S = \begin{bmatrix}
-1 & 2 \\
-2 & 1 \\
1 & -1
\end{bmatrix}
\]
The complexes are the left- and right-hand sides of the reactions. The expression of the c complexes in terms of the m chemical species is defined by an $m \times c$ matrix Z: E.g., for $X_1 + 2X_2 \rightleftharpoons X_3 \rightleftharpoons 2X_1 + X_2$

$$Z = \begin{bmatrix}
1 & 0 & 2 \\
2 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}$$

The complexes define the vertices of a directed graph, with edges corresponding to the reactions with incidence matrix B. In the example

$$B = \begin{bmatrix}
-1 & 0 \\
1 & -1 \\
0 & 1
\end{bmatrix}$$

Basic relation

$$S = ZB$$
The basic model for specifying the reaction rates $v(x)$ is mass action kinetics. For the single reaction

$$X_1 + 2X_2 \rightleftharpoons X_3,$$

the mass action kinetics reaction rate is the combination of the forward reaction $X_1 + X_2 \rightarrow X_3$ with forward reaction rate $v^+(x_1, x_2) = k^+ x_1 x_2^2$ and the reverse reaction $X_1 + X_2 \leftarrow X_3$, with reaction rate $v^-(x_3) = k^- x_3$. The net reaction rate is

$$v(x_1, x_2, x_3) = k^+ x_1 x_2^2 - k^- x_3$$

Note that the powers of x_1, x_2, x_3 appear as coefficients of the matrix Z.
In general, the mass action reaction rate of the \(j \)-th reaction, from a substrate complex \(S_j \) to a product complex \(P_j \), is given as

\[
v_j(x) = k_j^+ \prod_{i=1}^{m} x_i^{Z_{iS_j}} - k_j^- \prod_{i=1}^{m} x_i^{Z_{iP_j}}
\]

where \(Z_{i\rho} \) is the \((i, \rho)\)-th element of the complex stoichiometric matrix \(Z \).

Crucial observation: this can be also written as

\[
v_j(x) = k_j^+ \exp \left(Z_{S_j}^T \ln(x) \right) - k_j^- \exp \left(Z_{P_j}^T \ln(x) \right)
\]

where \(Z_{S_j} \) and \(Z_{P_j} \) are the columns of \(Z \) corresponding to the substrate and the product complex of the \(j \)-th reaction.

(The mapping \(\ln : \mathbb{R}^c_+ \to \mathbb{R}^c \) is the element-wise natural logarithm.)
Definition

A vector of concentrations $x^* \in \mathbb{R}_+^m$ is a **thermodynamic equilibrium** if

$$v(x^*) = 0$$

Basic paradigm from thermodynamics:

every well-defined chemical reaction network has a thermodynamic equilibrium

This corresponds to **microscopic reversibility**.

Under which conditions on the reaction constants does there exist a thermodynamic equilibrium?
The j-th reaction from substrate S_j to product P_j

$$v_j(x) = k_j^+ \exp (Z_{S_j}^T \ln(x)) - k_j^- \exp (Z_{P_j}^T \ln(x))$$

satisfies $v_j(x^*) = 0$ if and only if (detailed balance equations)

$$k_j^+ \exp (Z_{S_j}^T \ln(x^*)) = k_j^- \exp (Z_{P_j}^T \ln(x^*)),$$ \quad j = 1, \cdots, r

Defining the equilibrium constants K_j^{eq} as $K_j^{eq} := \frac{k_j^+}{k_j^-}$ this is equivalent to

$$K_j^{eq} = \exp \left(Z_{P_j}^T \ln(x^*) - Z_{S_j}^T \ln(x^*) \right), \quad j = 1, \cdots, r$$

or equivalently

$$K^{eq} = \text{Exp} \left(B^T Z^T \ln(x^*) \right) = \text{Exp} \left(S^T \ln(x^*) \right),$$

where $\text{Exp} : \mathbb{R}^c \rightarrow \mathbb{R}^c_+$ is the element-wise exponential function.
Proposition

There exists a thermodynamic equilibrium $x^* \in \mathbb{R}_+^m$ if and only if $k_j^+ > 0, k_j^- > 0$, for all $j = 1, \ldots, r$, and furthermore

$$\ln(K_{eq}) \in \text{im } S^T$$

Non-trivial condition if $\ker S \neq \{0\}$ (e.g., if there are cycles in the graph). Furthermore the set of all thermodynamic equilibria \mathcal{E} is equal to

$$\mathcal{E} = \{x^{**} \in \mathbb{R}_+^m \mid S^T\ln(x^{**}) = S^T\ln(x^*)\}$$

Assuming the existence of a thermodynamic equilibrium we obtain:
Define the conductance of reaction j as

$$
\kappa_j(x^*) := k_j^+ \exp \left(Z_{S_j}^T \ln(x^*) \right) = k_j^- \exp \left(Z_{P_j}^T \ln(x^*) \right), \quad j = 1, \cdots, r
$$

Then

$$
v_j(x) = \kappa_j(x^*) \left[\exp \left(Z_{S_j}^T \ln \left(\frac{x}{x^*} \right) \right) - \exp \left(Z_{P_j}^T \ln \left(\frac{x}{x^*} \right) \right) \right],
$$

where the quotient vector $\frac{x}{z} \in \mathbb{R}^m$ is defined element-wise. With

$$
\mathcal{K}(x^*) := \text{diag}(\kappa_1(x^*), \cdots, \kappa_r(x^*))
$$

it follows that

$$
v(x) = -\mathcal{K}(x^*) B^T \text{Exp} \left(Z^T \ln \left(\frac{x}{x^*} \right) \right),
$$

and thus the dynamics is

$$
\dot{x} = -ZB\mathcal{K}(x^*) B^T \text{Exp} \left(Z^T \ln \left(\frac{x}{x^*} \right) \right)
$$

Can be extended to Michaelis-Menten kinetics.
Although $\mathcal{K}(x^*)$ is dependent on the choice of the thermodynamic equilibrium x^*, this dependence is minor: $\mathcal{K}(x^*)$ is up to a positive multiplicative factor independent of the choice of x^*.

$B\mathcal{K}(x^*)B^T$ defines a Laplacian matrix for the graph of complexes, similar to ”consensus” (agreement) algorithms.

We expect convergence of $\exp\left(Z^T \ln \left(\frac{x(t)}{x^*} \right) \right)$ to a multiple of 1, or equivalently, convergence of the vector of complex thermodynamical affinities

$$\gamma(t) := Z^T \ln \left(\frac{x(t)}{x^*} \right)$$

to a multiple of 1.

Chemical reaction networks

Thermodynamic interpretation

Up to the constant RT (with T temperature) we may interpret

$$\mu(x) := \ln \left(\frac{x}{x^*} \right)$$

as the vector of chemical potentials. Define the Gibbs’ free energy (corresponding to x^*) as

$$G(x) = x^T \ln \left(\frac{x}{x^*} \right) + (x^* - x)^T 1_m,$$

Then $\frac{\partial G}{\partial x}(x) = \ln \left(\frac{x}{x^*} \right) = \mu(x)$ and thus

$$\dot{x} = -ZBKC(x^*)B^T \exp \left(Z^T \frac{\partial G}{\partial x}(x) \right)$$
For an ideal dilute solution the standard definition of the chemical potential \(\mu_i \) of species \(X_i \) with mole number \(n_i \) is

\[
\mu_i(x_i) = \mu_i^o(T, p) + RT \ln\left(\frac{x_i}{x_\Sigma}\right),
\]

with \(\mu_i^o \) the standard potential (depending on temperature \(T \) and pressure \(p \)), and \(x_\Sigma \) the total molar density.

Define the vector \(C \) of capacities with \(i \)-th component

\[
C_i := x_\Sigma \exp\left(\frac{-\mu_i^o}{RT}\right), \quad i = 1, \ldots, m
\]

Using the inverse relation \(\mu_i^o = -\ln\left(\frac{C_i}{x_\Sigma}\right) \) it follows that

\[
\mu_i = -\ln\left(\frac{C_i}{x_\Sigma}\right) + \ln\left(\frac{x_i}{x_\Sigma}\right) = RT \ln\left(\frac{x_i}{C_i}\right)
\]

and thus \(C \) defines a 'canonical' thermodynamical equilibrium.
Port-Hamiltonian formulation

Fundamental property: Let $\gamma(x) := Z^T \mu(x)$ be the vector of complex thermodynamical affinities. Then

$$\gamma^T B K(x^*) B^T \text{Exp}(\gamma) \geq 0, \quad \forall \gamma$$

with equality if and only if

$$B^T \gamma = 0$$

This implies that mass action kinetics chemical reaction networks are port-Hamiltonian. They arise from

$$\dot{x} = Z f_r$$

$$e_r = Z^T \frac{\partial G}{\partial x}(x)$$

together with the nonlinear resistive relation

$$f_r = -B K(x^*) B^T \text{Exp}(e_r), \quad e_r^T f_r \leq 0$$
Chemical reaction networks

Equilibria and stability

The Gibbs’ free energy G satisfies

$$G(x^*) = 0, \quad G(x) > 0, \quad \forall x \neq x^*,$$

$$\dot{G}(x) = -\frac{\partial^T G}{\partial x}(x)ZB\kappa(x^*)B^T\text{Exp}\left(Z^T\frac{\partial G}{\partial x}(x)\right) \leq 0$$

while $\dot{G}(x) = 0$ if and only if $x \in \mathcal{E}$.

Theorem

Consider a balanced mass action kinetics chemical reaction network with thermodynamic equilibrium x^*. Then all positive equilibria are thermodynamic equilibria, and for every initial condition $x_0 \in \mathbb{R}_+^m$ there exists a unique thermodynamic equilibrium x_∞ such that

$$\lim_{t \to \infty} x(t) = x_\infty$$

\(^a\)If the network does not have accumulation points at the boundary of \mathbb{R}_+^m.

Arjan van der Schaft (Univ. of Groningen) Network thermodynamics TFMST'13

16 / 26
Generalized gradient system formulation

By the mean value theorem there exists $\sigma_k \in (\gamma_i, \gamma_j)$ such that
\[
\exp(\gamma_j) - \exp(\gamma_i) = \exp(\sigma_k)(\gamma_j - \gamma_i)
\]
Doing this for every edge one thus rewrites $B^T\text{Exp}(\gamma)$ as
\[
B^T\text{Exp}(\gamma(x)) = \Delta B^T \gamma(x),
\]
with Δ the diagonal matrix with positive diagonal elements $\exp(\sigma_k)$, $k = 1, \ldots, r$. Thus we obtain the generalized gradient system
\[
\dot{x} = -ZB\mathcal{K}\Delta B^T Z^T \frac{\partial G}{\partial x}(x)
\]
with (pseudo-) Riemannian metric given by the inverse (if it exists) of the positive semi-definite matrix
\[
\mathcal{M} := ZB\mathcal{K}\Delta B^T Z^T
\]
Inflows and outflows

Open balanced chemical reaction networks are given by

\[
\dot{x} = -ZBK(x^*)B^T \exp \left(Z^T \ln \left(\frac{x}{x^*} \right) \right) + S_b v_b,
\]
\[
\mu_b = S_b^T \ln \left(\frac{x}{x^*} \right),
\]

which define a port-Hamiltonian input-state-output system with inputs \(v_b \) (boundary fluxes) and outputs \(\mu_b \) (boundary potentials). It follows that

\[
\frac{d}{dt} G(x) = -\gamma^T(x) BK(x^*) B^T \exp(\gamma(x)) + \mu_b^T v_b
\]

thus showing the passivity property

\[
\frac{d}{dt} G \leq \mu_b^T v_b
\]

Existence and stability of steady states for non-zero \(v_b \) is much less clear!
Outline

1. Chemical reaction networks
2. Reaction-diffusion networks
3. Conclusions and outlook
Consider a spatial domain $\mathcal{Z} \subset \mathbb{R}^3$ with boundary $\partial \mathcal{Z}$. Define

$$\mathcal{F}_x = \mathcal{E}_x = C^\infty(\mathcal{Z}, \mathbb{R})$$
$$\mathcal{F}_d = \mathcal{E}_d = C^\infty(\mathcal{Z}, \mathbb{R}^3)$$
$$\mathcal{F}_b = \mathcal{E}_b = C^\infty(\partial \mathcal{Z}, \mathbb{R})$$

Then $\mathcal{D} \subset \mathcal{F}_x \times \mathcal{F}_d \times \mathcal{F}_b \times \mathcal{E}_x \times \mathcal{E}_d \times \mathcal{E}_b$ defined as

$$\mathcal{D} := \{(f_x, f_d, f_b, e_x, e_d, e_b) \in \mathcal{F} \times \mathcal{E} \mid f_x = \text{div} e_d, \ f_d = \text{grad} e_x \text{ on } \mathcal{Z}, \ e_b = \text{tr} e_x, \ f_b = \nu \cdot \text{tr} e_d \text{ on } \partial \mathcal{Z}\}$$

is a **Stokes-Dirac structure**. In particular we have power-conservation

$$\int_{\mathcal{Z}} f_x(z)e_x(z)dz + \int_{\mathcal{Z}} f_d^T(z)e_d(z)dz + \int_{\partial\mathcal{Z}} f_b(z)e_b(z)dz = 0$$
Constitutive relations

Let $x(z, t) \in \mathcal{R}$ be a distributed variable. Consider an energy density H, and total energy \mathcal{H}

$$H(x(z, t)) \in \mathbb{R}, \quad \mathcal{H}(x(\cdot, t)) = \int_{\mathcal{Z}} H(x(z, t)) dz \in \mathbb{R},$$

and terminate the f_x, e_x port of \mathcal{D} by

$$f_x(z, t) = -\frac{\partial}{\partial t} x(z, t), \quad e_x(z, t) = \frac{d}{dx} H(x(z, t))$$

Terminate the f_d, e_d port of \mathcal{D} by the resistive relation

$$e_d = -\mathcal{R}_d(x) f_d$$

with the 3×3-matrix $\mathcal{R}_d(x) = \mathcal{R}_d^T(x) \geq 0$, ensuring that

$$e_d^T f_d \leq 0$$
Substitution yields

\[\frac{\partial}{\partial t} x(z, t) = -f_x = -\text{div } e_d = \text{div } \left[R_d(x) f_d \right] = \text{div } \left[R_d(x) \text{ grad } e_x \right] = \text{div } \left[R_d(x) \text{ grad } \frac{d}{dx} H(x(z, t)) \right] \]

and, since \(\text{grad } \frac{d}{dx} H(x(z, t)) = \frac{d^2 H}{dx^2}(x(z, t)) \text{ grad } x(z, t), \)

\[\frac{\partial}{\partial t} x(z, t) = \text{div } \left[R_d(x(z, t)) \frac{d^2 H}{dx^2}(x(z, t)) \text{ grad } x(z, t) \right] \]

which is in the general form of a scalar diffusion system

\[\frac{\partial}{\partial t} x(z, t) = \text{div } \left[D(x(z, t)) \text{ grad } x(z, t) \right] \]
Port-Hamiltonian reaction-diffusion networks

We will merge the two port-Hamiltonian descriptions. Let

\[x_1(z, t), \cdots, x_m(z, t) \]

denote the concentrations of the chemical species, which now are spatially distributed.

Define the combined Dirac structure

\[D := \{(f_x, f_d, f_b, f_r, \nu, e_d, e_b, e_r, \mu_b) \in F \times E | \]

\[f_x = \text{Div } e_d - Z f_r - S_b \nu_b, \quad f_d = \text{Grad } e_x \text{ on } Z, \quad e_r = Z^T e_x \]

\[e_b = \text{tr } e_x, \quad f_b = \nu \cdot \text{tr } e_d \text{ on } \partial Z, \quad \mu_b = S_b^T e_x \}

and consider as Hamiltonian the Gibbs’ free energy

\[G(x) = x^T \ln \left(\frac{x}{x^*} \right) + (x^* - x)^T 1_m \]

and retain the same resistive relations:

\[e_d = -R_d(x)f_d, \quad f_r = -BK(x^*)B^T \text{Exp}(e_r) \]
Figure: The port-Hamiltonian formulation of a mass-action kinetics reaction-diffusion system on a spatial domain M with chemical in/outflows $u = v_b$ and outputs $y = \mu_b$.
Outline

1 Chemical reaction networks

2 Reaction-diffusion networks

3 Conclusions and outlook
Conclusions and outlook

Chemical reaction networks:
- Structured description of chemical reaction networks: dynamics is similar to mass-damper systems with nonlinear dampers.
- Framework can be extended from mass action kinetics to Michaelis-Menten kinetics (enzymatic reactions).
- Although stability picture for closed ($v_b = 0$) chemical reaction networks is clear, the steady-state analysis for open reaction networks is not well understood (due to the nonlinear resistive relation).

Reaction-diffusion systems:
- Port-Hamiltonian formulation provides a good starting point for analysis: to be worked out.
- Structure-preserving discretization leads to port-Hamiltonian compartmental models: see the thesis of Marko Seslija.

To be done: analysis and control of reaction-diffusion systems.

Papers can be found on my homepage: www.math.rug.nl/~arjan
The 21st International Symposium on Mathematical Theory of Networks and Systems will be hosted by the University of Groningen, the Netherlands. [WWW.RUG.NL/MTNS2014]